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Statistical distributions 

V V Mikhailov 
Kazan Physical and Technical Institute of the Academy of Sciences of USSR, Kazan 420029 
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Abstract. The quantum mechanical addition of an arbitrary (very large) number of identical 
angular momenta is considered. The resulting states j m  usually occur many times. In this 
paper the corresponding multiplicities Pi and Q, are investigated. Several explicit formu- 
lae for Q,,, are given. The asymptotic approximations for multiplicities P, and Q,, which 
are the Wigner and Gauss distributions respectively, are derived. All parameters of the 
distributions are explicitly obtained. A comparison of theoretical multiplicities with the 
exact ones is made when the number of angular momenta is relatively small. 

1. Introduction 

Let us consider n identical spins, each having the angular momentum s. Under the 
quantum mechanical vector addition of these angular momenta the resulting angular 
momenta J’ = ns, ns - 1, . . . 0 (or f) occur with multiplicities P;,,. Further, we label the 
number of states of the system with whole magnetic quantum number m as Q”,. 

The basic relations between the numbers P and Q are 

where x = 2s + 1. For very large n and s = f we have the statistical approximation 

= 2 ” ( ~ n / 2 ) - ” ~  exp(-2m2/n), (3) 
see for example Kittel(l977). 

Bloch (1954) has considered the distribution of total angular momentum in the 
nucleus which consists of many particles each having an angular momentum. He has 
derived the asymptotic formula for the number Nj (analogous to our Pi)  of levels with 
angular momentum j and energy up to a given value, which has the form of the Wigner 
distribution 

(4) 

Cleary and Wybourne (1971), using group theoretical methods and the theory of 
numbers, have investigated, for large n, the distribution of the angular momentum 
multiplicities which arise in the irreducible representation [n, 0, 0, . . . 01 of SU(2s + 1). 
They have found that the numbers Qm have a normal distribution and, as a 

N~ - (2j + 1) exp[-(j + t )* /21~~] .  
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consequence, the numbers Pi are distributed with respect to j according to the 
Wigner-type form. 

Biittner (1 967) and Mikhailov (1974) have derived generating functions, recurrence 
relations and tables for multiplicities which have been considered from the asymptotic 
point of view by Cleary and Wybourne (1971). 

Mikhailov (1977) and Rashid (1977), using different methods, have found an 
explicit formula for the numbers Pi: 

In 0 2 of this paper we write several explicit formulae for the numbers Om, one of 
which is very similar to formula ( 5 ) .  In 0 3 the generating functions and, as a 
consequence, the recurrence relations for the numbers Q, and Pi are determined. The 
asymptotic formulae for the numbers Q and P are derived in 09 4 and 5 .  The formulae 
have the forms of Gauss and Wigner distributions accordingly, as well as the asymptotic 
formulae for angular momentum multiplicities in the irreducible representation 
[n,  0, 0, . . . 01 of the group SU(2s + 1) (Cleary and Wybourne 1971). All the dis- 
tribution parameters obtained in this paper are explicitly determined in terms of the 
numbers of particles n and their angular momenta s. In the particular case when s = 4, 
the expression for the numbers Q inevitably proves to be formula (3). 

2. Exact expression for the numbers Q 

In addition to formula ( 5 )  for Py, the generalising numbers P;: (Mikhailov 1977) were 
introduced : 

(6) ps.w = ps,v-1 -ps.v-l 
In 1, i + l , n  

PI.0 ps 
in  in, 

(s + l ) n  - xk - j - v - 2 
k n - V - 2  17) 

As may be seen from the last expression, the numbers PX have a simple transformation 
when j and Y are changed. In particular, the relations (6) and (7) are true when Y is 
negative. This may be proved by the same method as in Mikhailov (1977) for positive v. 
Setting Y = 0 in (6), we find recurrence relations which are identical to (2) .  Further, 
observing that initial values of P and Q (when j = ns, m = ns)  are equal, 

we obtain 

With the help of (12) from Mikhailov (1977) we find that 

For s = 1, m = 0 the numbers QLn have an interesting structure. From the begin- 
ning we give the sequence of the first 13 numbers QA,, = Q, = 1, 1, 3, 7, 19, 51, 141, 
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393,1107,3139,8953,25653,73789 (n = 0, 1, . . . ,12). Thisconcise table allowsus to 
check the hypothetical expression 

where 

Finally we have 

k n  Q n = C  k i  C Q i ( i ) ( 2 J -  (11) 

This is the self-reproducing series of numbers. It may be constructed from Qo = 1. 
Further, the numbers Ak proved to have another and more simple form 

The last expression together with (10) gives the formula for the summation of the 
numbers Qn with binomial coefficients as the summation weights. Using (9) and (12) we 
have 

which allows the generalisation for the case when m and s are arbitrary integer or 
half-integer numbers 

3. Generating functions 

From (14) we may see that the numbers Q are equal to the coefficients in the 
decomposition of the polynomial of degree n 

where 
4; = xs+c(ys-’I, 4Ln = X n s + m y n s - m *  

Then the generating function for all numbers Q may be written in the form 
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The condition (2) in combination with (16) leads to the relation 

from which we can easily deduce the generating function for the numbers Pjn; 

The recurrence relations can be derived from the last four formulae. Let for example 
nl + n 2  = n then (16) leads to the equality 

from which we have 

For n2 = 1 the equality Q",,,,, = 1 (m2  = -s, -s + 1, . , . , s) is true; then from (20) we 
obtain 

Q L - 3 . n - i  + Q L - r + i , n - l  +.  * . + Q L + s , n - i  = Q L n .  (21) 

This recurrence relation bears a great resemblance to the analogous relation (7) of 
Mikhailov (1977) for the numbers Pjn. 

4. Asymptotic formula for Q 

We mentioned in the Introduction that the numbers QL, are distributed in accordance 
with the Gauss form for s = $and n -$ CO (3). The comparison with the exact values of Q 
shows that for s > $ the approach to the normal distribution, provided n is increasing, is 
faster than for s = 4. Further, without special proof, we use as a basis the theorem that 
the normal distribution is the true asymptotic formula for the numbers Q. Our aim will 
be to find the parameters of this distribution. 

Thus we start from the formula 

QLn = Q&, exp(-m2/c;). (22) 
Having rewritten the normalisation condition (1) for n + 03 in the integral form 

cc0 

QL, dm =x" J L  

For s =+, 1,.  , . , 4  and n = 1 , 2 , .  . . , 10-20 (depending on s) the tables of exact 
numbers QLn have been calculated by the author. These tables may be used as the 
experimental material to check the proposed theoretical formulae. In particular the 
exact numbers must obey condition (22) for m = 1. It is not difficult to obtain the 
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sequence of parameters c’, which is given in table 1 for s = 1, but the basic contents of 
the tables are the differences S(c’,) = c’, -c;-~. 

With the help of the table we may see that for increasing n the differences S 
approximate to the numbers As : A1 = 4, A312 = 5, A2 = 4. By means of a similar straight- 
forward method we found that A3 = 8, A4 = $. Also from (3) we have All’ = 5. 

Assuming that S (c i )  approximates to the constant value in all cases under consi- 
deration, we adopt the second supposition which is concluded in the equality 

1 

c’,=A,.n (25) 

where n is very large. Then it is not difficult to see that all the numbers A, may be 
written in the simple form 

A, = 2s(s + 1)/3. (26) 

Table 1. The parameters c’, and their differences 6(c’.) which were obtained for m = 1 
assuming (22) to be true. The numbers Q& and Qf, were extractedfrom the tablesof exact 
numbers Q. 

s = l  n 10 11 12 13 14 15 16 
c 14.34 15.67 17.00 18.34 19.67 21.00 22.34 
6C 1.338 1.330 1.3335 1.3321 1.3330 1.3333 

s = f  n 8 10 12 
2 sc 5.173 5.014 4.995 

s = $  n 7 9 11 13 

s=2 n 6 7 8 9 10 11 

2 6c 4.77 4.97 4.994 4.997 

SC 3.13 4.35 3.88 4.02 3.98 3.99 

Summarising the formulae (22), (24-26) we write the asymptotical formula, which was 
sought for, in the explicit form 

QL, =,yn[2ns(s + 1)/3]-’/’ exp[-3m2/2ns(s + l)]. (27) 

The last formula can be proved quite strictly by means of the recurrence relations 
(21). As before, the starting points of our proof are the two assumptions (22) and (25). 
Substituting (22) in (21) and using the expression for the normalisation constant (24) we 
obtain 

exp[-(m +p)’/A,(n - l)] = (2s+ l)[(n - l)/n]”’ exp(-m2/A,n). 
&=-S 

If we divide both sides of the equality by the exponential from the right-hand side and 
make small simplifications, we get 

Supposing m sufficiently small in comparison with ns (maximum of m), taking into 
account that A, > 1 for s 2 1, we substitute unity for the first exponential in (28), expand 
the other exponentials in powers of (2mp -p2)/As(n - 1) and break the series off after 
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linear terms. Moreover, taking into account that XF p = 0 we obtain 

(2s + 1) - [A,(n - 1)I-l C p 2  = (2s + l)[(n - 1)/n]1’2, 
CI 

and finally 

A, = lim [ ( n  - 1){1 - [ (n  - l)/n]1’2}(2s + 1)l-’z p z  
n + m  w 

= [2/(2s + l)][s(s + 1)(2s + 1)/3] = 2s(s + 1)/3. 

(29) 

(30) 

The comparison of the Gauss distribution (27) with the exact numbers Q shows 
satisfactory agreement. First of all, the numbers a;,, calculated with the help of (24), 
approximate more exactly to the true multiplicities while n is increasing (checked for 
s = $,2) or s is increasing (checked for n = 8). Further for s = 4, n = 8 the inner half of 
the succession of the theoretical numbers Q”,(lml S ns/2) does not deviate from the 
exact number succession more than 4% and for s = 4, n = 9 by more than 3.5%. But it 
must be mentioned that the wings of the Gauss curve (Iml>ns/2) give appreciably 
increased values when n and s are comparatively small. 

5. Asymptotic formula for P 

We have obtained an approximate (for small n )  expression for multiplicities Q(27), 
which for n + 00 is an asymptotic formula. With the help of (2) we try to find an 
analogous approximation for the numbers P. Substituting (22), (25) into (2) one finds 
that 

P;, = C?hn exp(-j2/ci){l -exp[-(2j+ l ) /c i ]}  

= Q&(2j + l / c i )  exp(-j2/ci){l - (2j  + 1)/2cf,  + . . .}. (31) 

Let us neglect (2j  + 1)/2ci  because of 

S 1  
3 -- 3 ns 

2ns(s + 1) - 2(s + 1) 
( 2 j +  1)/2ci  s 

Here j has been replaced by its maximum ns. The approximation adopted is quite 
accurate when j < ns/3 or ns/4 and the more exact, the greater s. 

If the series in curly brackets of (31) is broken off, the formulae do not satisfy the 
normalisation condition ( l ) ,  which we rewrite for n -+ 00 in the integral form 

jam (2j  + l)P;,, d j  = x“. 

Defining the new normalisation constant P;, from (32), we obtain finally 

P ; ~  = p i n ( 2 j +  1) exp(-j2/ci), 

P;, = Xn[(Tci )1’2(Ci  +i)+ 2ci1-I. 

132) 

( 3 3 )  

How close to the true multiplicities are the numbers P from (33)? For the purpose of 
comparison we will consider the quantity IAPI which is the modulus of relative deviation 
of theoretical numbers P from true ones. 
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For constant s and increasing n IAPI increases, reaches its maximum IAPlma, for 
some n = n’ and after that decreases to zero. For some small s we have 

S 1 2 3 4 
n’ 6 12 20 > 20 
IAP&lmax 17% 7% 4.6% <2*5% 

For s = 1 the modulus of deviation has a poorly distinguished maximum and the 
numbers n = 6 and IAPlma, = 17% are to some extent conditional. 

On the other hand, if we increase the index j beginning from zero, we will find that 
lAPl is smaller than or approximately equal to IAPI for j = 0. This will be true up to 
j = ns/2.  In the region of j ==jmax (the value of j for which Pi has a maximum) the relative 
error is particularly small. It is not difficult to find from (33)  

jmax = [(8nA, + l)”* - 1]/4 = nA,/2.  

For j > ns/2 (the tail of the distribution curve) and small n, the theoretical numbers 
apparently exceed the true ones. 

As a whole, for small j G S  4 3 )  and for increasing n the relative error moves to 
zero. Figure 1 gives quite good proof of this statement, where the theoretical and true 
numbers P for n = 10 and s = 4 are given. 

Figure 1. Angular momentum multiplicities Pi which occur with the addition of ten angular 
momenta each equal to four. The smooth curve is derived in accordance with formula (27). 
The discrete points are exact multiplicities. 
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